Botanikai Közlemények

  Journal of the Botanical Section of the Hungarian Biological Society
 

< 2018

 

Botanikai Közlemények 105(1): 13–26 (2018)
DOI: 10.17716/BotKozlem.2018.105.1.13

Effect of N, P and K fertilization on the species succession
of an established grass sward during a decade


Péter RAGÁLYI1, Imre KÁDÁR1, László SZEMÁN2, Péter CSATHÓ1,
Péter CSONTOS1*

1Institute for Soil Sciences and Agricultural Chemistry, Centre for Agricultural Research,
Hungarian Academy of Sciences, Herman Ottó út 15, Budapest, H-1022, Hungary
2Szent István University, Institute of Crop Production, Páter Károly utca 1,
Gödöllő, H-2100, Hungary
*corresponding author: cspeter@rissac.hu

Accepted: 16 April 2018

Key words: calcareous chernozem, established grass, fertilizer effects, feld experiment, long-term succession.

Effects of different soil N, P and K supply levels and their combinations were examined onthe species composition of a grass sward between 2006 and 2015 in a feld experiment. Te grass was established in autumn of 2000 with seed mixture of eight grass species. Te calcareous chernozem loamy soil of the growing site contained around 3% humus, 3–5% CaCO3, 20–22% clay in the ploughed layer and was originally moderately supplied with available N and K, and relatively poorly supplied with P and Zn. Te trial included 4N×4P×4K=64 treatments in 2 replications, giving a total of 128 plots. The cover of grass species was surveyed every year at the end of May before the frst cut. Perennial ryegrass (Lolium perenne), timothy (Phleum pratense), meadow fescue (Festuca pratensis) and red fescue (Festuca rubra) disappeared from the experiment in the frst few years. Crested wheatgrass (Agropyron cristatum) expanded through the years and required higher N and P supply to thrive. Smooth brome grass (Bromus inermis) was not a sown species, but established and expanded through the years. It benefted from N and K fertilization up to the highest supply, whereas a moderate P supply level was already satisfactory. Tall fescue (Festuca arundinacea) was the dominant species in the frst years, but was continuously supressed. It required moderate N fertilization, since higher doses reduced the cover below the level of N control. P control treatment was the most favourable, whereas K had a slightly positive effect. Te cover of cocksfoot (Dactylis glomerata) also showed a decreasing trend. Moderate N supply was the most effective, whereas P and K had only a slight effect. Reed canarygrass (Phalaris arundinacea) could not really spread, but remained present sporadically during the studied period. It preferred fertilized plots over control plots. Cover of other plant species, primarily herbs, increased continuously from 2% to 30–37% through the years mainly on control, especially on N control plots. Te species composition was considerably modifed by N, P and K supply of the soil.

 

Full text

 

 

References

 

Berendse F., Elberse W. Th., Geerts R. H. M. E. 1992: Competition and nitrogen loss from plants in grassland ecosystems. Ecology 73(1): 46–53. https://doi.org/10.2307/1938719

Brueck H. 2008: Effects of nitrogen supply on water-use efciency of higher plants. Journal of Plant Nutrition and Soil Science 171(2): 210–219. https://doi.org/10.1002/jpln.200700080

Buzás I., Fekete A., Buzás Iné, Csengeri Pné, Kovács Ané: 1979. Műtrágyázási irányelvek és üzemi számítási módszer. MÉM NAK. Budapest, 47 pp.

Czóbel Sz., Németh Z., Szirmai O., Gyuricza Cs., Tóth A., Házi J., Vikár D., Penksza K. 2013: Short-term effects of extensive fertilization on community composition and carbon uptake in a Pannonian loess grassland. Photosynthetica 51(4): 490–496. https://doi.org/10.1007/s11099-013-0052-z

Dell Inc. 2015: Dell Statistica (data analysis sofware system), version 13. sofware.dell.com.

Egner H., Riehm H., Domingo W. R. 1960: Untersuchungen über die chemische Bodenanalyse als Grundlage für die Beurteilung des Nährstoffzustandes der Böden II. Kungliga Lantbrukshögskolans Annaler 26: 199–215.

Elberse W. Th., Bergh van den J. P., Dirven J. G. P. 1983: Effects of use and mineral supply on the botanical composition and yield of old grassland on heavy-clay soil. Netherlands Journal of Agricultural Science 31: 63–88.

Ellenberg H., Leuschner C. 2010: Vegetation Mitteleuropas mit den Alpen in ökologischer, dynamischer und historischer Sicht. 6th ed. Eugen Ulmer UTB Verlag, Stuttgart, 1334 pp.

Erickson J. E. and Kenworthy K. E. 2011: Nitrogen and light affect water use and water use effciency of zoysiagrass genotypes differing in canopy structure. HortScience 46(4): 643–647.

Falkengren-Grerup U. 1998: Nitrogen response of herbs and graminoids in experiments with simulated acid soil solution. Environmental Pollution 102(1): 93–99. https://doi.org/10.1016/s0269-7491(98)80020-1

 Franzluebbers A. J., Seman D. H., Stuedemann J. A. 2013: Forage dynamics in mixed tall fescue-bermudagrass pastures of the Southern Piedmont USA. Agriculture, Ecosystems and Environment 168: 37–45. https://doi.org/10.1016/j.agee.2013.02.004

Horváth F., Dobolyi Z. K., Morschhauser T., Lőkös L., Karas L., Szerdahelyi T. 1995: Flóra adatbázis 1.2. Taxonlista és attribútum-állomány. MTA ÖBKI – MTM Növénytár, Vácrátót–Budapest, 267 pp.

Isbell F., Reich P. B., Tilman D., Hobbie S. H., Polasky S., Binder S. 2013: Nutrient enrichment, biodiversity loss, and consequent declines in ecosystem productivity. Proceedings of the National Academy of Sciences of the USA 110(29): 11911–11916. https://doi.org/10.1073/pnas.1310880110

Jacobsen J. S., Lorbeer S. H., Houlton H. A. R., Carlson G. R. 1996: Nitrogen fertilization of dryland grasses in the Northern Great Plains. Journal of Range Management 49(4): 340–345. https://doi.org/10.2307/4002594

Janssens F., Peeters A., Tallowin J. R. B., Bakker J. P., Bekker R. M., Fillat F., Oomes M. J. M. 1998: Relationship between soil chemical factors and grassland diversity. Plant and Soil 202: 69–78. https://doi.org/10.1023/a:1004389614865

Kádár I. 2000: Az őszi árpa (Hordeum vulgare L.) műtrágyázása karbonátos vályog csernozjom talajon. Növénytermelés 49: 661–675. (In Hungarian with English summary)

Kádár I. 2013a: A gyepek műtrágyázásáról. MTA ATK TAKI, Budapest, 289 pp. (In Hungarian with English summary)

Kádár I. 2013b: A mezőföldi műtrágyázási tartamkísérlet tanulságai 1984–2000. MTA ATK TAKI, Budapest, 356 pp. (In Hungarian with English summary)

Kádár I., Földesi D. 2001: A mák (Papaver somniferum L.) műtrágyázása karbonátos vályog csernozjom talajon. I. Növénytermelés 50: 453–465. (In Hungarian with English summary)

Kádár I., Ragályi P., Szemán L., Csontos P. 2014: Tápanyagellátás hatása 13 éves telepített gyep fejlődésére és botanikai összetételére a Mezőföldön. Botanikai Közlemények. 101(1–2): 95–104. (In Hungarian with English summary)

Lawes J. B., Gilbert J. H., Masters M. T. 1882: Agricultural, botanical, and chemical results of experiments on the mixed herbage of permanent meadow, conducted for more than twenty years in succession on the same land. Part II. The botanical results. Philosophical Transactions of the Royal Society of London 173: 1181–1413. https://doi.org/10.1098/rstl.1882.0029

McLeod L. B. 1965: Effect of nitrogen and potassium fertilization on the yield, regrowth, and carbohydrate content of the storage organ of alfalfa and grasses. Agronomy Journal 57(4): 345–350. https://doi.org/10.2134/agronj1965.00021962005700040011x

Németh Z., Falvai D., Szirmai O., Czóbel Sz. 2017: Archeofton és neofton gyomfajok ftomassza vizsgálata. Tájökológiai Lapok 15(1): 21–29.

Ragályi P., Kádár I. 2006: Effect of NPK fertilization on yield and mineral element content of an established all-grass. Agrokémia és Talajtan 55(1): 155–164. https://doi.org/10.1556/ agrokem.55.2006.1.17

Ragályi P., Kádár I., Csontos P. 2014: Effect of precipitation on the yield of hay meadows with contrasting nutrient supply. Bulgarian Journal of Agricultural Science 20(4): 779–785.

Spielberger T., Deléglise C., DeDanieli S., Bernard-Brunet C. 2010: Resilience of acid subalpine grassland to short-term liming and fertilization. Agriculture, Ecosystems and Environment 137(1-2): 158–162. https://doi.org/10.1016/j.agee.2010.01.017

Szemán L. 2009: Stress effect of fertilization and precipitation on the biodiversity of rangeland. Cereal Research Communications 37: 357–360.

Szemán L., Kádár I., Ragályi P. 2010: Műtrágyázás hatása a telepített pillangós nélküli gyep botanikai összetételére. Növénytermelés 59(1): 85–105. (In Hungarian with English summary) https://doi.org/10.1556/novenyterm.59.2010.1.5

Tilman D., Wedin D. 1991: Dynamics of nitrogen competition between successional grasses. Ecology 72(3): 1038–1049. https://doi.org/10.2307/1940604

Williams E. D. 1978: Botanical composition of the park grass plots. Rothamsted Experimental Station Report for 1977 Part 2, pp. 31–36.