Botanikai Közlemények

  Journal of the Botanical Section of the Hungarian Biological Society
 

< 2018

 

Botanikai Közlemények 105(2): 253–267 (2018)
DOI: 10.17716/BotKozlem.2018.105.2.253

Effect of plant derived smoke on the sprouting of asexual reproductive organs
for three herbaceous perennial plant species


A. F. ABBAS1, A. MOJZES2, T. KALAPOS1


  1Department of Plant Systematics, Ecology and Theoretical Biology, Institute of Biology, Loránd Eötvös University,
H-1117 Budapest, Pázmány P. stny 1/C.; abbas.amira@outlook.com  

2MTA Centre for Ecological Research, Institute of Ecology and Botany,
Alkotmány u. 2-4, H-2163 Vácrátót, Hungary


Accepted: 4 July 2018


Key words:
Convallaria majalis, fire, Poa bulbosa, Ranunculus ficaria, smoke water.

It is known since the 1990s that smoke from burning plant biomass can enhance seed germination or seedling growth for numerous plant species. However, our understanding of the effect of plant-derived smoke on the sprouting of asexual reproductive organs is insufcient. In a laboratory experiment, we tested the hypothesis if smoke treatment (applied as aqueous smoke solution, i.e. smoke-water) enhances sprouting of the asexual reproductive organ for three herbaceous perennial plant species: Convallaria majalis L., Poa bulbosa L. and Ranunculus ficaria L. The smoke treated plant organ was rhizome (C. majalis), bulbous shout base (P. bulbosa) or tuberous root (R. ficaria). We recorded first shoot length, first leaf diameter and number of leaves for R. ficaria, shoot length for C. majalis, and rate and speed of sprouting for P. bulbosa. For none of the species and recorded variables had the smoke treatment signifcant difference compared to control (moistened with tap water). However, the smoke treated P. bulbosa’s survival was signifcantly higher, and a higher number of C. majalis individuals compared to control remained alive until the end of the experiment. Thus, our results do not support the hypothesis on the positive effect of plant-derived smoke on the sprouting of asexual reproductive organs. However, the beneficial smoke effect on the survival was shown. This latter result opens an opportunity to use smoke technology in a new aspect: in ex situ conservation programs using propagation from asexual reproductive organs, greater efficiency can be achieved with smoke treatment. Nevertheless, these results are far insuffcient to draw a general conclusion on the issue. Further studies are needed involving a much larger number of plant species and various smoke treatments (e.g. aerosol smoke or different dilutions of smoke-water). 

 

Full text

References

 

Aremu A. O., Kulkarni M. G., Bairu M. V., Finnie J. F., van Staden J. 2012: Growth stimulation effects of smoke-water and vermicompost leachate on greenhouse grown-tissue-cultured ‘Williams’ bananas. Plant Growth Regulation 66(2): 111–118. https://doi.org/10.1007/s10725-011-9634-6
Bargmann T., Maren I. E., Vandvik V. 2014: Life afer fre: smoke and ash as germination cues in ericads, herbs and graminoids of northern heathlands. Applied Vegetation Science 17(4): 670–679. https://doi.org/10.1111/avsc.12106
Brown N. A. C., van Staden J., Daws M. I., Johnson T. 2003: Patterns in the seed germination response to smoke in plants from the Cape Floristic Region, South Africa. South African Journal of Botany 69(4): 514–525. https://dx.doi.org/10.1016/S0254-6299(15)30289-1
Chiwocha S. D. S., Dixon K. W., Flematti G. R., Ghisalberti E. L., Merritt D. J., Nelson D. C., Riseborough J.-A. M., Smith S. M., Stevens J. C. 2009: Karrikins: A new family of plant growth regulators in smoke. Plant Science 177(4): 252–256. https://doi.org/10.1016/j.plantsci.2009.06.007
Flematti G. R., Dixon K. W., Smith S. M. 2015: What are karrikins and how were they ‘discovered’ by plants? BMC Biology 13(1): 1–7. https://doi.org/10.1186/s12915-015-0219-0
Flematti G. R., Ghisalberti E. L., Dixon K. W., Trengove R. D. 2004: A compound from smoke that promotes seed germination. Science 305(5686): 977. https://doi.org/10.1126/science.1099944
Flematti G. R., Ghisalberti E. L., Dixon K. W., Trengove R. D. 2009: Identifcation of alkyl substituted 2 H-furo [2, 3-c] pyran-2-ones as germination stimulants present in smoke. Journal of Agricultural and Food Chemistry 57(20): 9475–9480. https://doi.org/10.1021/jf9028128
Imanishi H., Fortanier E. J. 1982: Effects of an exposure of bulbs to ethylene and smoke on flowering Duch Iris. Bulletin of the University of Osaka Prefecture Ser. B, Agriculture and biology 34: 1–5.

Keeley J. E. 1993: Smoke-induced flowering in the fre-lily Cyrtanthus ventricosus. South African Journal of Botany 59(6): 638. https://doi.org/10.1016/S0254-6299(16)30681-0
Kulkarni M. G., Ascough G. D., Van Staden J. 2007: Effects of foliar applications of smokewater and a smoke-isolated butenolide on seedling growth of okra and tomato. HortScience 42(1): 179–182.

Kulkarni M. G., Ascough G. D., van Staden J. 2008: Smoke-water and a smoke-isolated butenolide improve growth and yield of tomatoes under greenhouse conditions. HortTechnology 18(3): 449–454.
Kulkarni M. G., Ascough G. D., Verschaeve L., Baeten K., Arruda M. P., van Staden J. 2010: Effect of smoke-water and a smoke-isolated butenolide on the growth and genotoxicity of commercial onion. Scientia Horticulturae 124(4): 434–439. https://doi.org/10.1016/j.scienta.2010.02.005
Kulkarni M. G., Light M. E., van Staden J. 2011: Plant-derived smoke: old technology with possibilities for economic applications in agriculture and horticulture. South African Journal of Botany 77(4): 972–979. https://doi.org/10.1016/j.sajb.2011.08.006
Landis T. D. 2000: Where there’s smoke… there’s germination? Native Plants Journal 1(1): 25–29.

Li W., Tran L-S. P. 2015: Are karrikins involved in plant abiotic stress responses? Trends in Plant Science 20(9): 535–538. https://doi.org/10.1016/j.tplants.2015.07.006
Light M. E., Burger B. V., Staerk D., Kohout L., van Staden J. 2010: Butenolides from plantderived smoke: natural plant-growth regulators with antagonistic actions on seed germination. Journal of Natural Products 73: 267–269. https://doi.org/10.1021/np900630w
Light M. E., van Staden J., Bornman C. H. 2004: Te potential of smoke in seed technology. South African Journal of Botany 70(1): 97–101. https://dx.doi.org/10.1016/S0254-6299(15)30311-2
Malabadi R. B., Meti N. T., Mulgund G. S., Nataraja K., Kumar S. V. 2012: Smoke saturated water promoted in vitro seed germination of an epiphytic orchid Oberonia ensiformis (Rees) Lindl. Research in Plant Biology 2(5): 32–40.
Malabadi R. B., Nataraja K. 2007: Smoke-saturated water influences somatic embryogenesis using vegetative shoot apices of mature trees of Pinus wallichina A. B. Jacks. Journal of Plant Science 2: 45–53.
Mojzes A., Csontos P., Kalapos T. 2015: Is the positive response of seed germination to plantderived smoke associated with plant traits? Acta Oecologica 65–66: 24–31. https://doi.org/10.1016/j.actao.2015.05.001
Mojzes A., Kalapos T. 2012: A vegetáció égésekor keletkező füst szerepe a növények regenerációjában. Tájökológiai Lapok 10(2): 247–270.
Mojzes A., Kalapos T. 2014: Plant-derived smoke stimulates germination of four herbaceous species common in temperate regions of Europe. Plant Ecology 215(4): 411–415. https://doi.org/10.1007/s11258-014-0311-5
Mojzes A., Kalapos T. 2015: Plant-derived smoke enhances germination of the invasive common milkweed (Asclepias syriaca L.). Polish Journal of Ecology 63(2): 280–285. https://doi.org/10.3161/15052249PJE2015.63.2.011
Montenegro G., Ginocchio R., Segura A., Keeley J. E., Gomez M. 2004: Fire regimes and vegetation responses in two Mediterranean-climate regions. Revista Chilena de Historia Natural 77(3): 455–464.
Papenfus H. B., Kumari A., Kulkarni M. G., Finnie J. F., van Staden J. 2014: Smoke-water enhances in vitro pollen germination and tube elongation of three species of Amaryllidaceae. South African Journal of Botany 90: 87–92. https://doi.org/10.1016/j.sajb.2013.10.007
Pechony O., Shindell D. T. 2010: Driving forces of global wildfres over the past millennium and the forthcoming century. Proceedings of the National Academy of Sciences 107(45): 19167–19170. https://doi.org/10.1073/pnas.1003669107
R Core Team 2015: R : A language and environment for statistical computing. R Foundation for Statistical Computing, Vienna, Austria.

Sabadin P., Gómez M., Ginocchio R., Peña I., Mujica A. M., Montenegro G. 2015: Effect of fre on herbaceous “matorral” vegetation of Central Chile. Ciencia e Investigación Agraria 42(3): 415–425. https://doi.org/10.4067/S0718-16202015000300010
Senaratana T., Dixon K., Bunn E., Touchell D. 1999: Smoke-saturated water promotes somatic embryogenesis in geranium. Plant Growth Regulation 28: 95–99. https://doi.org/10.1023/A:1006213400737
Soós V., Sebestyén E., Posta M., Kohout L., Light M. E., van Staden J., Balázs E. 2012: Molecular aspects of the antagonistic interaction of smoke-derived butenolides on the germination process of Grand Rapids lettuce (Lactuca sativa) achenes. New Phytologist 196(4): 1060–1073. https://doi.org/10.1111/j.1469-8137.2012.04358.x
Sparg S. G., Kulkarni M. G., Light M. E., van Staden J. 2005: Improving seedling vigour of indigenous medicinal plants with smoke. Bioresource Technology 96(12): 1323–1330. https://doi.org/10.1016/j.biortech.2004.11.015
Stirk W. A., Kulkarni M. G., van Staden J. 2016: Effect of smoke-derived extracts on Spirodela polyrhiza, an aquatic plant grown in nutrient-rich and -depleted conditions. Aquatic Botany 129: 31–34. https://doi.org/10.1016/j.aquabot.2015.11.004
van Staden J., Jager A. K., Light M. E., Burger B. V. 2004: Isolation of the major germination cue from plant-derived smoke. South African Journal of Botany 70(4): 654–659. https://doi.org/10.1016/S0254-6299(15)30206-4
Wells P. V. 1969: Te relation between mode of reproduction and extent of speciation in woody genera of the California chaparral. Evolution 23(2): 264–267.
https://dx.doi.org/10.2307/2406790
Yao L, Naeth M. A., Mollard F. P. O. 2017: Ecological role of pyrolysis by-products in seed germination of grass species. Ecological Engineering 108(2017): 78–82. https://doi.org/10.1016/j.ecoleng.2017.08.018
Yearsley E. M., Fowler W. M., He T. 2018: Does smoke water enhance seedling ftness of serotinous species in fre-prone southwestern Western Australia? South African Journal of Botany 115: 237–243.
https://doi:10.1016/j.sajb.2017.09.012