Botanikai Közlemények
Journal of the Botanical Section
of the Hungarian Biological Society
Botanikai Közlemények 103(2): 237–248 (2016)
Drought-induced changes in photosynthetic
parameters of seedlings of 22 barley cultivars
A. SKRIBANEK1, I. SCHMIDTHOFFER1* and P. CSONTOS2
1University of West Hungary, Faculty of Science and Technology, Biology Institute, Szombathely, Károlyi Gáspár tér 4; H-9700, Hungary; skribanek.anna@nyme.hu
2Hungarian Academy of Sciences, Centre for Agricultural Research, Institute for Soil Science and Agricultural Chemistry, P. O. Box 102, Budapest, H–1525; Hungary; cspeter@rissac.hu
*
corresponding author:
schmidthoffer.ildiko@nyme.hu
Accepted: 15 september 2016
Key words: barley, chlorophyll, drought stress, fluorescence, photosynthesis. Characteristic changes can be observed in the physiology of plants during drought stress: water-loss is reduced due to the closure of stomata, root growth and later shoot growth are reduced, photosynthetic processes are inhibited – among other physiological changes. 22 barley (Hordeum vulgare L.) varieties were tested in order to investigate the physiological effects of drought stress. Measurements were performed on nine-day old seedlings using PAM chlorophyll fluorescence imaging in four replicates. Drought stress was induced by 20% PEG (polyethylene glycol) 6000 solution and 16 hours of drying. Te maximum quantum yield (Fv/Fm), the yield (Y) and the non-photochemical quenching (NPQ) were measured afer the drought stress. All three parameters were signifcantly reduced in response to drought conditions: the maximum quantum yield decreased by 16%, the yield decreased by 8% and the non-photochemical quenching decreased by 94%. Based on these results the investigated parameters could be good indicators of drought tolerance of barley genotypes, even in the early stages of their development.
References
Abdeshahian M., Nabipour M., Meskarbashee M. 2010:
Chlorophyll
fluorescence as criterion for the diagnosis of salt stress in wheat (Triticum
aestivum) plants. World Academy of Science, Engineering and Technology
71: 569–571.
Aro E-M., Virgin I., Andersson
B. 1993: Photoinhibition of photosystem II. Inactivation, protein damage and
turnover. Biochimica et Biophysica Acta 1143: 113–134.
http://dx.doi.org/10.1016/0005-2728(93)90134-2
Aro E-M., Suorsa M., Rokka A., Allahverdiyeva Y., Paakkarinen V., Saleem A.,
Battchikova N., Rintamäki E. 2005:
Dynamics of
photosystem II: a proteomic
approach to thylakoid protein complexes. Journal of Experimental Botany 56
(411): 347–356.
http://dx.doi.org/10.1093/jxb/eri041
Bączek-Kwinta R., Kozieł A., Seidler-Łożykowska K. 2011:
Are the fluorescence parameters of German chamomile leaves the first
indicators of the anthodia yield in drought conditions? Photosynthetica 49
(1): 87–97.
http://dx.doi.org/10.1007/s11099-011-0013-3
Baker N. R.
2008: Chlorophyll fluorescence: A probe of photosynthesis in vivo. Annual
Review of Plant Biology 59: 89–113.
http://dx.doi.org/10.1146/annurev.arplant.59.032607.092759
Baker N.R., Rosenqvist E.
2004: Applications of chlorophyll fluorescence can improve crop production
strategies: an examination of future possibilities. Journal of Experimental
Botany 55 (403): 1607–1621.
http://dx.doi.org/10.1093/jxb/erh196
Bálint A. F., Szira F., Galiba G., Jäger K., Fábián A., Barnabás B.
2009: Szárazságtűrési vizsgálatok gabonaféléken. In:
Veisz O. (szerk.): A
martonvásári agrárkutatások hatodik évtizede – Martonvásár 1949–2009. pp.
43–48.
Balouchi H. R. 2010:
Screening wheat parents of mapping population for heat and drought
tolerance, detection of wheat genetic variation. International Journal of
Biology and Life Sciences 4(6): 56–66.
Calatayud A., Roca D., Martínez P. F. 2006:
Spatial-temporal
variations is rose leaves under water stress conditions studied by
chlorophyll fluorescence imaging. Plant Physiology and Biochemistry 44(10):
564–573.
http://dx.doi.org/10.1016/j.plaphy.2006.09.015
Chaves M. M., Flexas J., Pinheiro C.
2009: Photosynthesis
under drought and salt stress: regulation mechanisms from whole plant to
cell. Annals of Botany 103(4): 551–560.
http://dx.doi.org/10.1093/aob/mcn125
Faria T., Silvério D., Breia E., Cabral
R., Abadía
A., Abadía
J., Pereira
J. S., Chaves
M. M. 1998:
Differences in the response of carbon assimilation to summer stress (water
deficits, high light and temperature) in four Mediterranean tree species.
Physiologia Plantarum 102: 419–428.
http://dx.doi.org/10.1034/j.1399-3054.1998.1020310.x
Hassan I. A.,
2006: Effects of water stress and high temperature on gas exchange and
chlorophyll fluorescence in Triticum
aestivum L. Photosynthetica 44(22): 312–315.
http://dx.doi.org/10.1007/s11099-006-0024-7
Henson I. E., Jensen C. R., Turner N. C.
1989: Leaf gas exchange and water relations of lupins and wheat. III.
Abscisic acid and drought-induced stomatal closure. Functional Plant Biology
16(5): 429–442.
http://dx.doi.org/10.1071/pp9890429
Jäger K., Fábián A., Eitel G., Szabó L., Deák Cs., Barnabás B., Papp I.
2014: A
morpho-physiological approach differentiates bread wheat cultivars of
contrasting tolerance under cyclic water stress. Journal of Plant Physiology
171: 1256–1266.
http://dx.doi.org/10.1016/j.jplph.2014.04.013
Jamieson P. D., Francis G. S., Wilson D. R., Martin R. J.
1995: Effects of water deficits on evapotranspiration from barley.
Agricultural and Forest Meteorology 76: 41–58.
http://dx.doi.org/10.1016/0168-1923(94)02214-5
Jamil M., Rehman S. U., Lee K. J., Kim J. M., Kim H. S., Rha E. S. 2007:
Salinity reduced growth PS2 photochemistry and chlorophyll content in
radish. Scientia Agricola 64(2): 111–118.
http://dx.doi.org/10.1590/s0103-90162007000200002
Kerepesi I., Galiba G.
2000: Osmotic and salt stress-induced alteration in soluble carbohydrate
content in wheat seedlings. Crop Science 40(2): 482–487.
http://dx.doi.org/10.2135/cropsci2000.402482x
Khamssi N. N., Najaphy A. 2012:
Comparison of photosynthetic components of wheat genotypes under rain-fed
and irrigated conditions. Photochemistry and Photobiology 88(1): 76–80.
http://dx.doi.org/10.1111/j.1751-1097.2011.01008.x
Mamnouie E., Fotouhi Ghazvini R., Esfahany M., Nakhoda B. 2006:
The effects of water deficit on crop yield and the physiological
characteristics of barley (Hordeum vulgare L.) varieties. Journal of
Agricultural Science and Technology 8: 211–219.
Pálfai I.
2011: Aszályos évek az Alföldön 1931–2010 között, pp: 87–96, In:
Rakonczai J. (szerk.):
Környezeti változások és az Alföld. Nagyalföld Alapítvány Kötetei 7.
Nagyalföld Alapítvány, Békéscsaba, 396 pp.
Rapacz M.; Kocieiniak J., Jurczyk B. 2010:
Different patterns of physiological and molecular response to drought in
seedlings of malt- and feed-type barleys (Hordeum
vulgare). Journal of Agronomy and Crop Science 196(1): 9–19.
http://dx.doi.org/10.1111/j.1439-037x.2009.00389.x
Shangguan Z. P.; Shao M. G.;
Dyckmmans J.
2000: Effects of nitrogen nutrition and water deficit on net photosynthetic
rate and chlorophyll fluorescence in winter wheat, Journal of Plant
Physiology 156(1): 46–51.
http://dx.doi.org/10.1016/s0176-1617(00)80271-0
Sinha N. C., Patil B. D.
2006: Screening of barley varieties for drought resistance. Plant Breeding
97(1): 13–19.
http://dx.doi.org/10.1111/j.1439-0523.1986.tb01296.x
Skribanek A., Tomcsányi A.
2008: Sörárpafajták szárazságstressz reakciói. A Nyugat-magyarországi
Egyetem Savaria Egyetemi Központ Tudományos Közleményei XVI.
Természettudományok 11: 137–145.
Slavík, B.
1974: Methods of studying plant water relations. Springer-Verlag, Berlin.
Solti Á., Gáspár L., Mészáros I., Szigeti Z., Lévai L., Sárvári É. 2008:
Impact of iron
supply on the kinetics of recovery of photosynthesis in Cd-stressed poplar (Populus
glauca). Annals of Botany 102: 771–782.
http://dx.doi.org/10.1093/aob/mcn160
Stocker O.
1929: Vizsgálatok különböző termőhelyen nőtt növények vízhiányának
nagyságáról. Erdészeti Kísérletek 31: 63–76.
Szira F., Bálint A. F., Börner A., Galiba G.
2008: Evaluation of drought-related traits and screening methods at
different developmental stages in spring barley. Journal of Agronomy and
Crop Science 194(5): 334–342.
http://dx.doi.org/10.1111/j.1439-037x.2008.00330.x
Tang Y., Wen X., Lu Q., Yang Z., Cheng Z., Lu C. 2007:
Heat stress induces an aggregation of the light-harvesting complex of
photosystem II in spinach plants. Plant Physiology 143: 629–638.
http://dx.doi.org/10.1104/pp.106.090712
Vaz J., Sharma P.K. 2011:
Relationship between xanthophy cycle and non-photochemical quenching in rice
(Oryza sativa L.) plants in response to light stress. Indian Journal
of Experimental Biology 49: 60–67.
Zlatev Z.
2009: Drought-induced changes in chlorophyll fluorescence of young wheat
plants.
Biotechnology &
Biotechnological Equipment 23(1): 437–441.
http://dx.doi.org/10.1080/13102818.2009.10818458
|