Botanikai Közlemények
Journal of the Botanical Section
of the Hungarian Biological Society
Botanikai Közlemények 103(1): 153–171 (2016)
REVIEW
The role of
Chlamydomonas green alga genus
in biotechnology and its place in the system of green algae
Sz. KATONA1,
Z. MOLNÁR1 and V. ÖRDÖG1,2
1Institute
of Plant Biology, Faculty of Agricultural and Food Sciences, 2University
of KwaZulu-Natal, School of Biological Sciences, Pietermaritzburg
Campus, 3209 Scottsville, Private Bag X 01,
Accepted: 25 February 2016
Key words:
biotechnology,
Chlamydomonas,
green algae, phylogenetics, polyphasic approach, taxonomy
Chlamydomonas is one of the biggest green algal genera with more than 800 described species. Approximately 400 strains are available in collections and applicable for research purposes. Referring to the versatility of genus Chlamydomonas, it is applied on scientific fields such as genetics, photosynthesis research, UV-resistance issues, possibilities of biogas and biodiesel production, hormone research, agriculture and medicine. The green alga genus Chlamydomonas is traditionally classified according to morphological characteristics in the vegetative stage of the life cycle. Essential features of the genus are the two anterior flagella of equal length and the single chloroplast containing one or more pyrenoids. Since the 1990s, the use of molecular markers for phylogenetic analysis demonstrated that the morphological approach is appropriate neither for most green algae, nor for the genus Chlamydomonas. Most green alga genera are polyphyletic, so their status and species number require further revision. The latest trend is the polyphasic approach which combines different methods like morphology, citology, ultrastructural and molecular biological studies. Morphologists on the side of traditional taxonomy register more than 800 Chlamydomonas species, however this amount will likely decrease to 100-150 Chlamydomonas species by using a polyphasic approach.
Ács É., Kiss K.
T. (szerk.) 2004: Algológiai praktikum. Eötvös Kiadó, Budapest, p. 361.
Barsanti L.,
Gualtieri P. 2006: Algae anatomy,
biochemistry, and biotechnology. CRC Press, Boca Raton, FL, USA.
Barclay W. R.,
Lewin R. A. 1985: Microalgal
polysaccharide production for the conditioning of agricultural soils. Plant
and Soil 88(2): 159–169.
http://dx.doi.org/10.1007/BF02182443
Becker B.
2013: Snow ball earth and the split of
Streptophyta and Chlorophyta. Trends in Plant Science 18(4): 180–183.
http://dx.doi.org/10.1016/j.tplants.2012.09.010
Bellinger E. G., Sigee D. C.
2010: Freshwater
Algae, Identification and Use as Bioindicators. John Wiley & Sons, West
Sussex, UK.
Bertalan I., Esposito D., Torzillo G., Faraloni C., Johanningmeier U.,
Giardi M. T.
2007:
Photosystem II stress tolerance in the unicellular green alga
Chlamydomonas reinhardtii under space conditions. Microgravity
Science and Technology 19(5): 122–127.
http://dx.doi.org/10.1007/BF02919466
Bidigare R. R., Ondrusek M. E., Kennicutt M. C., Iturriaga R. H., Harvey R.,
Hoham H. W., Macko S. A.
1993: Evidence for a photoprotective function for secondary carotenoids of
snow algae. Journal of
Phycology
29(4): 427–434.
http://dx.doi.org/10.1111/j.1529-8817
Black J. G.
2008: Microbiology: principles and explorations. Wiley.
Bloodgood R. A.
1990: Gliding motility and flagellar glycoprotein dynamics in
Chlamydomonas. In: Bloodgood R. A. (ed.) Ciliary and flagellar
membranes. Plenum Press, New York and London, pp. 91–128.
Brook A. J., Johnson L. R.
2002: Order Zygnemales. In: John D. M., Whitton B. A., Brook A. J. (eds.)
The freshwater algal flora of the British Isles. An identification guide to
freshwater and terrestrial algae. Cambridge University Press, Cambridge, pp.
479–593.
Buchheim M. A.,
Turmel M., Zimmer, E. A., Chapman R. L.
1990: Phylogeny of Chlamydomonas
(Chlorophyta) based on cladistic analysis of 18s rRNA sequence data. Journal
of Phycology 26(4): 689–699.
http://dx.doi.org/10.1111/j.0022-3646.1990.00689.x
Cagnon C.,
Mirabella B., Nguyen H. M., Beyly-Adriano A., Bouvet B., Cuiné S., Beisson
F., Peltier G., Li-Beisson Y. 2013:
Development of a forward genetic screen to isolate oil mutants in the green
microalga Chlamydomonas reinhardtii.
Biotechnology for Biofuels 6: 178.
http://dx.doi.org/10.1186/1754-6834-6-178 Chisti Y. 2007: Biodiesel from microalgae. Biotechnology Advances 25(3): 294–306. http://dx.doi.org/10.1016/j.biotechadv.2007.02.001
Deng X., Cai J., Li Y., Fei X.
2014: Expression and knockdown of the
PEPC1 gene affect carbon flux in the biosynthesis of triacylglycerols by
the green alga
Chlamydomonas
reinhardtii.
Biotechnology Letters 36(11): 2199–2208.
http://dx.doi.org/10.1007/s10529-014-1593-3
Dent R., Han M., Niyogi K. K.
2001: Functional genomics of plant photosynthesis in the fast lane using
Chlamydomonas reinhardtii. Trends
in Plant Science 6(8): 364–371.
http://dx.doi.org/10.1016/S1360-1385(01)02018-0
Dill O.
1895: Die Gattung Chlamydomonas und ihre nachsten Verwandten.
Jahrbücher für wissenschaftliche
Botanik 28: 323–358.
pl.5.
Dolhi J. M., Maxwell D. P., Morgan-Kiss R.M.
2013:
Review: the Antarctic
Chlamydomonas raudensis:
an emerging
model for cold adaptation of photosynthesis.
Extremophiles 17(5): 711–722.
http://dx.doi.org/10.1007/s00792-013-0571-3
Dubini A.
2011:
Green Energy: Biofuel production from Chlamydomonas reinhardtii. The
Biochemical Society 33(2): 20–23.
Duval B., Shetty K., Thomas W. H.
2000: Phenolic compounds and antioxidant properties in the snow alga
Chlamydomonas nivalis after
exposure to UV light. Journal of Applied Phycology 11(6): 559–566.
http://dx.doi.org/10.1023/A:1008178208949
Ehrenberg C. G.
1833: Dritter Beitrag zur Erkenntnis großer Organisation in der Richtung des
kleinsten Raumes. Abh. Königl. Akad. Wiss. Berlin: 145–336.
Ehrenberg C. G.
1838: Die Infusionsthierchen als vollkommene Organismen. L. Voss, Leipzig.
Ettl H.
1976: Die Gattung Chlamydomonas Ehrenberg (Chlamydomonas
und die nächstverwandten Gattungen II). Beih Nova Hedwigia 60: 1–1122.
Evans R. D., Johansen J. R.
1999: Microbiotic crusts and ecosystem processes. Critical Reviews in Plant
Sciences 18(2): 183–225.
http://dx.doi.org/10.1080/07352689991309199
Falchini L., Sparvoli E., Tomaselli L.
1996: Effect of Nostoc
(Cyanobacteria)
inoculation on
the structure and stability of clay soils. Biology and Fertility of Soils
23(3): 346–352.
http://dx.doi.org/10.1007/BF00335965
Fan J., Andre C., Xu C.
2011: A chloroplast pathway for the de novo
biosynthesis of triacylglycerol in
Chlamydomonas reinhardtii.
FEBS Letters 585(12): 1985–1991.
http://dx.doi.org/10.1016/j.febslet.2011.05.018
Fawley M. W., Fawley K. P., Buchheim M. A.
2004: Molecular diversity among communities of freshwater microchlorophytes.
Microbial Ecology 48(4):
489–499.
http://dx.doi.org/10.1007/s00248-004-0214-4
Francois D.
L., Robinson G. G. C.
1988: Indices of triazine toxicity in
Chlamydomonas geitleri Ettl. Aquatic Toxicology 16(3): 205–227.
http://dx.doi.org/10.1016/0166-445X(90)90038-Q
Frey W.
(ed.) 2015: Syllabus of Plant Families –
A. Engler's Syllabus der Pflanzenfamilien Part 2/1: Photoautotrophic
eukaryotic Algae Glaucocystophyta, Cryptophyta, Dinophyta/Dinozoa,
Haptophyta, Heterokontophyta/Ochrophyta, Chlorarachniophyta/Cercozoa,
Euglenophyta/Euglenozoa, Chlorophyta, Streptophyta p.p. J. Cramer in der
Gebr. Borntraeger Verlagsbuchhandlung, Stuttgart, Germany. 324 pp.
Friedl T.
1997:
The evolution of the green algae.
Plant Systematics and Evolution 11(suppl.): 87–101.
http://dx.doi.org/10.1007/978-3-7091-6542-3_4
Funes S.,
Lars-Gunnar F., González-Halphen D. 2007:
Chlamydomonas reinhardtii: The Model of Choice to Study Mitochondria
From Unicellular Photosynthetic Organisms. Methods in Molecular Biology 372:
137–149.
http://dx.doi.org/10.1007/978-1-59745-365-3_10
Gerloff J.
1940: Beiträge zur Kenntnis der Variabilität und Systematik der Gattung
Chlamydomonas. Archiv für
Protistenkunde 94: 311–502.
Gfeller R. P.,
Gibbs M.
1984:
Fermentative metabolism of
Chlamydomonas reinhardtii.
Plant Physiology 75(1):
212–218.
http://dx.doi.org/10.1104/pp.75.1.212
Ghirardi M. L.,
Dubini A., Yu J., Maness P. C. 2009:
Photobiological hydrogen-producing systems. Chemical Society Reviews 38:
52–61.
http://dx.doi.org/10.1039/B718939G
Ghirardi M.
L.,
King P. W., Posewitz M.C., Maness P.C., Fedorov A., Kim K., Cohen J.,
Schulten K., Seibert M.
2005: Approaches to developing biological H2-photoproducing organisms and processes. Biochemical
Society Transactions 33(1): 70–72.
http://dx.doi.org/10.1042/BST0330070
Gowans C. S.
1976: Genetics of Chlamydomonas moewusii and
Chlamydomonas eugametos. In:
Lewin, R. A. (ed.) The Genetics of Algae. Blackwell Scientific, Oxford, pp.
145-173. Greenbaum E. 1982: Photosynthetic hydrogen and oxygen production: kinetic studies. Science 215: 291–293. http://dx.doi.org/10.1126/science.215.4530.291
Greenbaum
E.
1988:
Energetic efficiency of hydrogen photoevolution by algal water splitting.
Biophysical
Journal
54(2):
365–368.
http://dx.doi.org/10.1016%2FS0006-3495(88)82968-0
Hajósné Dr.
Novák M. 1999:
Genetikai variabilitás a növénynemesítésben.
Mezőgazda Kiadó, Budapest.
Harris E. H.
1989: The Chlamydomonas
sourcebook. Academic Press, San Diego, California.
Harris E. H.
2009: The Chlamydomonas sourcebook
(second edition). Introduction to Chlamydomonas and its laboratory use, vol 1. Academic Press, San
Diego.
Hu C. X., Zhang D. L., Liu Y. D.
2004: Research
progress on algae of the microbial
crusts in
arid and semiarid regions. Progress in Natural Science 14(4): 289–295.
http://dx.doi.org/10.1080/10020070412331343501
Hu Q., Sommerfeld M., Jarvis E., Ghirardi M., Posewitz M., Seibert M.,
Dazrins A.
2008:
Microalgal triacylglycerols as feedstocks for
biofuel production: perspectives and advances.
The Plant Journal
54(4):
621–639.
http://dx.doi.org/10.1111/j.1365-313X.2008.03492.x
Jäger K., Bartók
T., Ördög V., Barnabás B. 2010:
Improvement of maize (Zea mays L.)
anther culture responses by algae-derived natural substances. South African
Journal of Botany 76(3): 511–516.
http://dx.doi.org/10.1016/j.sajb.2010.03.009
Kim C. W., Moon M., Park W., Yoo G., Choi Y., Yang J.
2014:
Energy-efficient cultivation of
Chlamydomonas reinhardtii for lipid
accumulation under flashing illumination conditions. Biotechnology and
Bioprocess Engineering 19(1): 150–158.
http://dx.doi.org/10.1007/s12257-013-0468-0
Kirk D. L.
2005: A twelve-step program for evolving multicellularity and a division of
labor. Bioessays 27(3): 299–310.
http://dx.doi.org/10.1002/bies.20197
Kol E., Flint E.
A. 1968: Algae in green ice from the
Balleny Islands, Antarctica. New Zealand Journal
of Botany 6(3): 249–261.
http://dx.doi.org/10.1080/0028825X.1968.10428810
Leliaert F., Smith D. R., Moreau H., Herron M. D., Verbruggen H., Delwiche
C. F., De Clerck O.
2012: Phylogeny
and molecular evolution of the green algae. Critical Reviews in Plant
Sciences 31(1): 1–46.
http://dx.doi.org/10.1080/07352689.2011.615705
Lemieux B., Turmel M., Lemieux C.
1985: Chloroplast DNA variation in
Chlamydomonas and its potential application to the systematics of this
genus. BioSystems 18(3-4), 293–298.
http://dx.doi.org/10.1016/0303-2647(85)90029-2
León R.,
Galván F. 1997: Analysis of effective
light in different photobioreactors: its infuence on growth, photosynthetic
activity and glycerol production by the freshwater green alga
Chlamydomonas reinhardtii. World
Journal of Microbiology and Biotechnology 13(2): 237–239.
http://dx.doi.org/10.1023/A:1018506317991
Lewis A. L.,
Mccourt R. M. 2004: Green algae and the
origin of land palnts. American Journal of Botany 91(10): 1535–1556.
http://dx.doi.org/10.3732/ajb.91.10.1535
Manuel A., Beligni M., Elder J., Siefker D., Tran M., Webber A., McDonald
T., Mayfield S.
2007: Robust expression of a bioactive mammalian protein in
Chlamydomonas chloroplast. Plant
Biotechnology Journal 5(3): 402–412.
http://dx.doi.org/10.1111/j.1467-7652.2007.00249.x
Matsuo Y., Imagawa H., Nishizawa M., Shizuri Y.
2005: Isolation of an algal morphogenesis inducer
from a marine bacterium.
Science 307: 1598.
http://dx.doi.org/10.1126/science.1105486
Mayfield S., Franklin S.
2005: Expression of human antibodies in eukaryotic micro-algae.
Vaccine 23(15):
1828–1832.
http://dx.doi.org/10.1016/j.vaccine.2004.11.013
McCourt R. M.
1995: Green algal phylogeny. Trends in Ecology and Evolution 10(4):159–163.
http://dx.doi.org/10.1016/S0169-5347(00)89027-8
Melis A., Zhang L., Forestier M., Hirardi M. L., Seibert M.
2000: Sustained Photobiological Hydrogen
Gas Production upon Reversible Inactivation of Oxygen Evolution in the Green
Alga Chlamydomonas reinhardtii.
Plant Physiology 122(1):
127–136.
http://dx.doi.org/10.1104/pp.122.1.127
Merchant S. S., Prochnik S. E., Vallon O., Harris E. H., Karpowicz S. J.,
Witman G. B.
et
al. 2007. The Chlamydomonas genome
reveals the evolution of key animal and plant functions. Science 318:
245–250.
http://dx.doi.org/10.1126/science.1143609
Metting B.
1987: Dynamics of wet and dry aggregate stability from a three-year
microalgal soil conditioning experiment in the field. Soil Science 143(2):
139–143.
http://dx.doi.org/10.1097/00010694-198702000-00009
Metting B.
1988: Micro-algae in agriculture. In: Borowitzka M. A., Borowitzka L. J.
(eds.) Microalgal biotechnology. Cambridge University Press, Cambridge, pp.
288–304.
Metting B., Rayburn W. R.
1983: The influence of a microalgal conditioner on selected Washington
soils: an empirical study. Soil Science Society of America Journal 47(4):
682–685.
http://dx.doi.org/10.2136/sssaj1983.03615995004700040015x
Misurcova L.,
Skrovankova S., Samek D., Ambrozova J., Machu L.
2012: Health Benefits of Algal Polysaccharides in Human Nutrition. Advances
in Food and Nutrition Research 66: 75–145.
http://dx.doi.org/10.1016/b978-0-12-394597-6.00003-3
Mussgnug J. H.,
Klassen V., Schlüter A., Kruse O. 2010:
Microalgae as a substrates for fermentative biogas production in a combined
biorefinery concept. Journal of Biotechnology 150(1): 51–56.
http://dx.doi.org/10.1016/j.jbiotec.2010.07.030
Necas J., Tetik
K., Sulek J. 1986: Mutation process
induced by MNNG in different phases of the cell cycle in
Chlamydomonas geitleri VI.
Dependence of the induction of mutagenesis on the mutagen dose in the course
of the cell cycle. Archiv für Hydrobiologie Supplement 44: 393–404.
Norton T. A., Melkonian M., Andersen R. A.
1996: Algal biodiversity. Phycologia 35(4): 308–326.
http://dx.doi.org/10.2216/i0031-8884-35-4-308.1
Ördög V., Pocsai
K., Gergely I., Bálint P., Németh L., Molnár Z.
2006: Microalgae in plant production and protection. 3rd Symposium on
Microalgae and Seaweed Products in Agriculture, Mosonmagyaróvár (Hungary),
21-23 June, p.1.
Painter T.
1993: Carbohydrate polymers in desert reclamation: the potential of
microalgal biofertilizers. Carbohydrate Polymers 20(2): 77–86.
http://dx.doi.org/10.1016/0144-8617(93)90081-E
Pascher A.
1927: Eine Chrysomonade mit gestielten und verweigten Kolonien. Archiv für
Protistenkunde 57: 319–330.
Patricio A. L.
2013:
Isolation, characterization and identification of microalgae from the Red
Sea. Thesis. King Abdullah University of Science and Technology, Thuwal,
Kingdom of Saudi Arabia.
Pedersen L. B., Rosenbaum J. L.
2008: Intraflagellar transport (IFT): role in ciliary assembly, resorption
and signalling. Current Topics in Developmental Biology 85: 23–61.
http://dx.doi.org/10.1016/S0070-2153(08)00802-8
Prakash J. W.,
Marimuthu J., Jeeva S. 2011:
Antimicrobial activity of certain fresh water microalgae from
Thamirabarani River, Tamil Nadu, South India. Asian Pacific Journal of
Tropical Biomedicine: 1(2): S170–S173.
http://dx.doi.org/10.1016/S2221-1691(11)60149-4
Prakash O.,
Verma M., Sharma P., Kumar M., Kumari K., Singh A., Kumari H., Jit S., Gupta
S. K., Khanna M., Lal R.
2007:
Polyphasic approach of bacterial classification – An overview of recent
advances. Indian Journal of Microbiology 47(2): 98–108.
http://dx.doi.org/10.1007/s12088-007-0022-x
Prochnik S. E., Umen J., Nedelcu A. M., Hallmann A., Miller S. M., Nishii I.
et al. 2010: Genomic analysis of organismal complexity in the multicellular
green alga Volvox carteri. Science
329: 223–226.
http://dx.doi.org/10.1126/science.1188800
Pröschold T., Marina B., Schlösserb U. G., Melkoniana M.
2001: Molecular Phylogeny and Taxonomic Revision of
Chlamydomonas (Chlorophyta). I.
Emendation of Chlamydomonas
Ehrenberg and Chloromonas Gobi,
and Description of Oogamochlamys
gen. nov. and Lobochlamys gen.
nov.
Protist 152(4): 265–300.
http://dx.doi.org/10.1078/1434-4610-00068
Pröschold, T., Silva, P. C.
2007: Proposal to change the listed type of
Chlamydomonas Ehrenb., nom. cons.
(Chlorophyta). Taxon 56(2): 595–596.
Pröschold T., Leliaert F.
2007: Systematics of the green algae: conflict of classic and modern
approaches. In: Brodie J., Lewis J., (eds.) Unravelling the algae: The past,
present, and future of algal systematics, CRC Press, Boca Raton, FL, pp.
123–153.
http://dx.doi.org/10.1201/9780849379901.ch7
Pulz O., Gross W.
2004: Valuable products from biotechnology of microalgae. Applied
Microbiology and Biotechnology 65(6): 635–648.
http://dx.doi.org/10.1007/s00253-004-1647-x
Remias D., Lutz U., Lutz C.
2010: Photosynthesis, pigments and ultrastructure of the alpine snow
alga
Chlamydomonas nivalis. European
Journal of Phycology 40(3): 259–268.
http://dx.doi.org/10.1080/09670260500202148
Richmond A.
2008: Handbook of microalgal culture: biotechnology and applied phycology.
Wiley-Blackwell.
Rodolfi L., Zittelli C. G., Bassi N., Padovani G., Biondi N., Bonini G.,
Tredici M. R.
2009: Microalgae for oil: strain selection, induction of lipid synthesis and
outdoor mass cultivation in a low-cost photobioreactor.
Biotechnology and Bioengineering 102(1): 100–112.
http://dx.doi.org/10.1002/bit.22033
Sharma O. P
1986.: Textbook of Algae. Tata McGraw-Hill, New Delhi.
Skaloud P.
2008:
Polyphasic approaches in the taxonomy of green aerophytic algae. Ph.D.
thesis. Charles University in Prague, Faculty of Science,
Department of
Botany.
Slaninová M., Nagyová B., Gálová E., Hendrychová J., Bišová K., Zachleder
V., Vlček
D. 2003:
The alga Chlamydomonas reinhardtii UVS11 gene is responsible
for cell division delay and temporal decrease in histone H1 kinase activity
caused by UV irradiation. DNA
Repair 2(6):
737–750.
http://dx.doi.org/10.1016/s1568-7864(03)00047-8
Solís R. A. R.,
Echeverría S. P., Valencia V. A. H. 2011:
La microalga verde Chlamydomonas
reinhardtii: nueva alternativa para la producción de proteínas
recombinantes de interés médico. Revista Ciencia, Octubre-Deciembre 2011,
pp. 2–9.
Spolaore P.,
Joannis-Cassan C., Duran E., Isambert A.
2006.: Commercial applications of microalgae. Journal of Bioscience and
Bioengineering 101(2): 87–96.
http://dx.doi.org/10.1263/jbb.101.87
Stern D. B., Witman G., Harris E. H. (eds.)
2009. The Chlamydomonas sourcebook. Second Edition. Academic Press, Oxford.
Stirk
W. A., Ördög V., Novák O., Rolcik J., Strnad M., Bálint P., van Staden J.
2013a: Auxin and cytokinin relationships in 24 microalgal strains. Journal
of Phycology 49(3): 459–467.
http://dx.doi.org/10.1111/jpy.12061
Stirk W. A., Bálint P., Tarkowská D., Novák O., Strnad M., Ördög V., van
Staden J.
2013b: Hormone profiles in microalgae: gibberellins and brassinosteroids.
Plant Physiology and Biochemistry 70: 348–353.
http://dx.doi.org/10.1016/j.plaphy.2013.05.037
Takeda T., Miyao K., Tamoi M., Kanaboshi H., Miyasaka H., Shigeoka S.
2003: Molecular
characterization of glutathione peroxidase-like protein in halotolerant
Chlamydomonas sp. W80. Physiologia
Plantarum
117(4): 467–475.
http://dx.doi.org/10.1034/j.1399-3054.2003.00075.x
Tamoi M., Nagaoka M., Shigeoka S.
2005: Immunological properties of sedoheptulose-1,7-bisphosphatase from
Chlamydomonas sp. W80.
Bioscience, Biotechnology and Biochemistry 69(4): 848–851.
http://dx.doi.org/10.1271/bbb.69.848
Tanaka S., Ikeda K., Miyasaka H.
2004: Isolation of a new member of group 3 late embryogenesis abundant
protein gene from a halotolerant green alga by a functional expression
screening with cyanobacterial cells. FEMS Microbiology Letters 236: 41–45.
http://dx.doi.org/10.1016/s0378-1097(04)00357-x
Tetali S. D.,
Mitra M., Melis A. 2007: Development of
the light-harvesting chlorophyll antenna in the green alga
Chlamydomonas reinhardtii is
regulated by the novel Tla1 gene.
Planta 225(4): 813–829.
http://dx.doi.org/10.1007/s00425-006-0392-z
Tran M., Zhon B., Petterson P., González M., Mayfield S.
2009:
Synthesis and assembly of a full-lenght human
monoclonal antibody in algal chloroplasts.
Biotechnology
and Bioengineering
104(4): 663–673.
http://dx.doi.org/10.1002/bit.22446
Ugwu C. U., Aoyagi H., Uchiyama H.
2008: Photobioreactors
for mass
cultivation of algae. Bioresource Technology 99(10): 4021–4028.
http://dx.doi.org/10.1016/j.biortech.2007.01.046
Umen J. G.
2011: Evolution of sex and mating loci: an expanded view from
Volvocine
algae. Current Opinion in Microbiology 14(6): 634–641.
http://dx.doi.org/10.1016/j.mib.2011.10.005
VanWinkle-Swift
K., Baron K., McNamara A., Minke P., Burrascano C., Maddock J.
1998: The Chlamydomonas zygospore: mutant
strains of Chlamydomonas monoica
blocked in zygospore morphogenesis comprise 46 complementation groups.
Genetics
148(1): 131–137.
Visviki I., Palladino J.
2001: Growth and Cytology of
Chlamydomonas acidophila Under Acidic Stress. Bulletin of Environmental
Contamination and Toxicology 66(5): 623–630.
http://dx.doi.org/10.1007/s001280054
Visviki I., Santikul D.
2000: The pH Tolerance of
Chlamydomonas applanata (Volvocales,
Chlorophyta). Archives of
Environmental Contamination and Toxicology 38(2): 147–151.
http://dx.doi.org/10.1007/s002449910018
Vuuren S. J., Taylor J., van Ginkel C., Gerber A.
2006:
Easy identification of the most common freshwater algae. North-West
University. Potchefstroom.
Wirth R.
2014: Biogáz termelő mikroorganizmus közösségek vizsgálata metagenomikai
megközelítéssel. Doktori értekezés. SZTE és MTA-SZBK.
Zenova G. M., Shtina E. A., Dedysh S. N., Glagoleva O. B., Likhacheva A. A.,
Gracheva T. A.
1995: Ecological
relations of algae in biocenoses. Mikrobiologiya 64: 121–133.
Zhang P., Liu S., Cong B., Wu G., Liu C., Lin X., Shen J., Huang X.
2011: A
novel omega-3 fatty acid desaturase involved in
acclimation processes of polar condition from Antarctic ice algae
Chlamydomonas
sp.
ICE-L. Marine Biotechnology 13(3): 393–401.
http://dx.doi.org/10.1007/s10126-010-9309-8
Zimmerman W. J. 1992:
Microalgal biotechnology and applications in agriculture. In: Metting F. B.
(ed.) Soil microbial ecology. Marcel Dekker, New York, pp. 457–479.
|