Botanikai Közlemények

  Journal of the Botanical Section of the Hungarian Biological Society

< 2015

Botanikai Közlemények 102(1–2): 141–157 (2015)
DOI: 10.17716/BotKozlem.2015.102.1-2.141


The role of seed banks in sustaining alkali grassland biodiversity in the Hortobágy National Park, Hungary

K. TÓTH1*, B. A. LUKÁCS2, Sz. RADÓCZ1 and E. SIMON1
 

1University of Debrecen, Department of Ecology, H-4010 Debrecen, P O Box 71. * kissa0306@gmail.com

2MTA Centre for Ecological Research, Department of Tisza River Research, H-4026 Debrecen, Bem tér 18/C

Accepted: 27 January 2015

Key words: halophyte, hygrophyte, persistence, salt content, water content.

We studied the vegetation, soil seed banks and environmental factors in three alkali grassland associations:Artemisio santonici-Festucetum pseudovinae dry alkali grasslands at highest elevations; Puccinellietum limosae at medium elevations and Agrostio stoloniferae-Caricetum distantis at the lowest elevations. We tested the following hypotheses: (i) Both species diversity in the seed banks and seed density are the highest in the most stressed grassland type (ii) Seed density of hygrophytes increases with decreasing elevation. We detected a mean seed bank density ranging from 30 104 up to 51 410 seeds/m2, which was higher than in most dry grasslands. The findings did not support our first hypothesis; both the lowest seed bank diversity and seed density were detected in the most stressed Puccinellietum limosae grasslands, where Spergularia salina and Juncus compressus were the only abundant seed bank species (possessing at least 1 000 seeds/m2). We detected the highest seed densities of the hygrophyte species in the lowest-elevated Agrostio stoloniferae-Caricetum distantis grasslands. The results partly supported the second hypothesis; most of the hygrophyte species were missing from the seed bank at the medium-elevated, but most saline Puccinellia grasslands. We detected more species in the seed banks than in the aboveground vegetation which underlines the importance of seed banks in sustaining the diversity of alkali grasslands. However, most of the graminoid species possessed no considerable seed bank, except for Juncus compressus (up to 38 619 seeds/m2). Our results suggest that persistence and establishment of most alkali grassland species are not supported by the local seed banks.

Full text

References

 

Badger, K.S., Ungar, I.A. 1994: Seed bank dynamics in an inland salt marsh, with

special emphasis on the halophyte Hordeum jubatum L. International Journal of Plant Sciences 155: 66-72. http://dx.doi.org/10.1086/297148

Borhidi, A. 1995: Social behaviour types, the naturalness and relative indicator values of the higher plants in the Hungarian Flora. Acta Botanica Hungarica 39: 97-181.

Bossuyt, B., Butaye, J., Honnay, O. 2006: Seed bank composition of open and overgrown calcareous grassland soils – a case study from Southern Belgium. Journal of Environmental Management 79: 364-371. http://dx.doi.org/10.1016/j.jenvman.2005.08.005

Bossuyt, B., Honnay, O. 2008: Can the seed bank be used for ecological restoration? An overview of seed bank characteristics in European communities. Journal of Vegetation Science 19: 875-884. http://dx.doi.org/10.3170/2008-8-18462

Csontos P. 2001: A természetes magbank kutatásának módszerei. Scientia Kiadó, Budapest.

Csontos P. 2007a: Dolomitgyepek magbankja ültetett feketefenyvesek talajában. Tájökológiai Lapok 5: 117-129.

Csontos, P. 2007b: Seed banks: ecological definitions and sampling considerations. Community Ecology 8: 75-85. http://dx.doi.org/10.1556/comec.8.2007.1.10

Chang, E.R., Jefferies, R.L., Carleton, T.J. 2001: Relationship between vegetation and soil seed banks in an arctic coastal marsh. Journal of Ecology 89: 367-384. http://dx.doi.org/10.1046/j.1365-2745.2001.00549.x

Crain, C.M., Albertson, L.K., Bertness, M.D. 2008: Secondary succession dynamics in estuarine marshes across landscape-scale salinity gradients. Ecology 89: 2889-2899. http://dx.doi.org/10.1890/07-1527.1

Deák B., Tóthmérész B. 2007: A kaszálás hatása a Hortobágy Nyírőlapos csetkákás társulásában. Természetvédelmi Közlemények 13: 179-186.

Deák, B., Valkó, O., Török, P., Tóthmérész, B. 2014a: Solonetz meadow vegetation (Beckmannion eruciformis) in East-Hungary - an alliance driven by moisture and salinity. Tuexenia 34: 187-203.

Deák, B., Valkó, O., Alexander, C., Mücke ,W., Kania, A., Tamás, J., Heilmeier, H. 2014b: Fine-scale vertical position as an indicator of vegetation in alkali grasslands – case study based on remotely sensed data. Flora 209: 693-697. http://dx.doi.org/10.1016/j.flora.2014.09.005

Deák, B., Valkó, O., Tóthmérész, B., Török, P. 2014c: Alkali marshes of Central-Europe ­ Ecology, Management and Nature Conservation. In: Shao H-B (Ed.) Salt Marshes: Ecosystem, Vegetation and Restoration Strategies. Nova Science Publishers, pp. 1-11.

Dengler, J., Janišová, M., Török P., Wellstein, C. 2014: Biodiversity of Palaearctic grasslands: a synthesis. Agriculture, Ecosystems and Environment 182: 1-14. http://dx.doi.org/10.1016/j.agee.2013.12.015

Egan, T.P., Ungar, I.A. 2000: Similarity between seed banks and above-ground vegetation along a salinity gradient. Journal of Vegetation Science 11: 189-194. http://dx.doi.org/10.2307/3236798

Fenner, M., Thompson, K. 2005: The Ecology of Seeds. Cambridge University Press, Cambridge.

Halassy, M. 2001: Possible role of the seed bank in the restoration of open sand grassland in old fields. Community Ecology 2: 101-108. http://dx.doi.org/10.1556/comec.2.2001.1.11

Hopfensperger, K.N. 2007: A review of similarity between seed bank and standing vegetation across ecosystems. Oikos 116: 1438-1448. http://dx.doi.org/10.1111/j.0030-1299.2007.15818.x

Hutchings, M.J., Russell, P.J. 1989: The seed regeneration dynamics of an emergent salt marsh. Journal of Ecology 77: 615-637. http://dx.doi.org/10.2307/2260974

Jutila, H.M. 1998: Seed banks of grazed and ungrazed Baltic seashore meadows. Journal of Vegetation Science 9: 395-408. http://dx.doi.org/10.2307/3237104

Kelemen, A., Török, P., Valkó, O., Miglécz, T., Tóthmérész, B. 2013a: Mechanisms shaping plant biomass and species richness: plant strategies and litter effect in alkali and loess grasslands. Journal of Vegetation Science 24: 1195-1203. http://dx.doi.org/10.1111/jvs.12027

Kelemen A., Török P., Valkó O., Miglécz T., Tóthmérész B. 2013b: A fitomassza és fajgazdagság kapcsolatát alakító tényezők hortobágyi szikes és löszgyepekben. Botanikai Közlemények 100: 47-59.

Király G. (szerk.) 2009: Új magyar füvészkönyv. Magyarország hajtásos növényei. Határozókulcsok. Aggteleki Nemzeti Park Igazgatóság, Jósvafő.

Khan, M.A. 1993: Relationship of seed bank to plant distribution in saline arid communities. Pakistan Journal of Botany 25: 73-82.

Lindborg, R., Bengtsson, J., Berg A., Cousins, S.A.O., Eriksson, O., Gustafsson, T., Per Hasund, K., Lenoir, L., Pihlgren, A., Sjödin, E., Stenseke, M. 2008: A landscape perspective on conservation of semi-natural grasslands. Agriculture, Ecosystems and Environment 125: 213-222. http://dx.doi.org/10.1016/j.agee.2008.01.006

Lukács B., Radócz Sz. 2012: Vegetáció átmenetek dinamikája szikes élőhely komplexumokban, eltérő csapadékjárású években. Természetvédelmi Közlemények 18: 326-337.

Maranón, T. 1998: Soil seed bank and community dynamics in an annual-dominated Mediterranean salt-marsh. Journal of Vegetation Science 9: 371-378. http://dx.doi.org/10.2307/3237101

Matus, G., Tóthmérész, B., Papp, M. 2003: Restoration prospects of abandoned species-rich sandy grassland in Hungary. Applied Vegetation Science 6: 169-178. http://dx.doi.org/10.1658/1402-2001(2003)006[0169:rpoass]2.0.co;2

Molnár A. 2004: A Hortobágy éghajlati jellemzői. In: Ecsedi Z. (szerk.): A Hortobágy madárvilága. Hortobágy Természetvédelmi Egyesület, Winter Fair, Balmazújváros, Debrecen, pp. 39-43.

Molnár, Z., Borhidi, A. 2003: Hungarian alkali vegetation: Origins, landscape history, syntaxonomy, conservation. Phytocoenologia 33: 377-408. http://dx.doi.org/10.1127/0340-269x/2003/0033-0377

Prach, K., Jongepierová, I., Řehounková, K., Fajmon, K. 2014: Restoration of grasslands on ex-arable land using regional and commercial seed mixtures and spontaneous succession: successional trajectories and changes in species richness. Agriculture, Ecosystems and Environment 182: 131-136. http://dx.doi.org/10.1016/j.agee.2013.06.003

Reiné, R., Chocarro, C., Fillat, F. 2004: Soil seed bank and management regimes of semi-natural mountain meadow communities. Agriculture, Ecosystems and Environment 104: 567-575. http://dx.doi.org/10.1016/j.agee.2004.01.024

Schmiede, R., Donath, T.W., Otte, A. 2009: Seed bank development after the restoration of alluvial grassland via transfer of seed-containing plant material. Biological Conservation 142: 404-413. http://dx.doi.org/10.1016/j.biocon.2008.11.001

Smith, L.M., Kadlec, J.A. 1983: Seed banks and their role during drawdown of a North American marsh. Journal of Applied Ecology 20: 673-684. http://dx.doi.org/10.2307/2403534

Ter Heerdt, G.N.J., Verweij, G.L., Bekker, R.M., Bakker, J.P. 1996: An improved method for seed-bank analysis: Seedling emergence after removing the soil by sieving. Functional Ecology 10: 144-151. http://dx.doi.org/10.2307/2390273

Thompson, K. 1986: Small scale heterogeneity in the seed bank of an acidic grassland. Journal of Ecology 74: 733-738. http://dx.doi.org/10.2307/2260394

Tóth, T., Kertész, M. 1996: Application of soil-vegetation correlation to optimal resolution mapping of solonetzic rangeland. Arid Soil Research and Rehabilatation 10: 1-12. http://dx.doi.org/10.1080/15324989609381415

Török, P., Arany, I., Prommer, M., Valkó, O., Balogh, A., Vida, E., Tóthmérész, B., Matus, G. 2009a: Vegetation, phytomass and seed bank of strictly protected hay-making Molinion meadows in Zemplén Mountains (Hungary) after restored management. Thaiszia 19: 67-77.

Török, P., Matus, G., Papp, M., Tóthmérész, B. 2009b: Seed bank and vegetation development of sandy grasslands after goose breeding. Folia Geobotanica. 44: 31-46. http://dx.doi.org/10.1007/s12224-009-9027-z

Török, P., Deák, B., Vida, E., Valkó, O., Lengyel, Sz., Tóthmérész, B. 2010: Restoring grassland biodiversity: Sowing low-diversity seed mixtures can lead to rapid favourable changes. Biological Conservation. 143: 806-812. http://dx.doi.org/10.1016/j.biocon.2009.12.024

Török, P., Kapocsi, I., Deák, B. 2012a: Conservation and management of alkali grassland biodiversity in Central-Europe. In: Zhang W. J. (Ed.) Grasslands: Types, Biodiversity and Impacts. Nova Science Publishers Inc., New York, pp. 109-118.

Török, P., Miglécz, T., Valkó, O., Kelemen, A., Deák, B., Lengyel, Sz., Tóthmérész, B. 2012b: Recovery of native grass biodiversity by sowing on former croplands: Is weed suppression a feasible goal for grassland restoration? Journal of Nature Conservation 20: 41-48. http://dx.doi.org/10.1016/j.jnc.2011.07.006

Török, P., Deák, B., Valkó, O., Kelemen, A., Kapocsi, I., Miglécz, T., Tóthmérész, B. 2014a: Recovery of alkali grasslands using native seed mixtures in Hungary. In: Kiehl, K., Kirmer, A., Shaw, N., Tischew, S. (eds.): Guidelines for native seed production and grassland restoration. Newcastle upon Tyne: Cambridge University Press. pp. 183-198.

Török, P., Valkó, O., Deák, B., Kelemen, A., Tóthmérész, B. 2014b: Traditional cattle grazing in a mosaic alkali landscape: Effects on grassland biodiversity along a moisture gradient. PLoS ONE 9 (5): e97095. http://dx.doi.org/10.1371/journal.pone.0097095

Ungar, I.A. 1991: Ecophysiology of vascular halophytes. CRC Press, Boca Raton, Florida.

Ungar, I.A., Woodell, S.R.J. 1993: The relationship between the seed bank and species composition of plant communities in two British salt marshes. Journal of Vegetation Science 4: 531-536. http://dx.doi.org/10.2307/3236080

Ungar, I.A. 2001: Seed banks and seed population dynamics of halophytes. Wetland Ecology and Management 9: 499-510.

Valkó, O., Török, P., Tóthmérész, B., Matus, G. 2011: Restoration potential in seed banks of acidic fen and dry-mesophilous meadows: Can restoration be based on local seed banks? Restoration Ecology 19: 9-15. http://dx.doi.org/10.1111/j.1526-100x.2010.00679.x

Valkó, O., Török, P., Matus, G., Tóthmérész, B. 2012: Is regular mowing the most appropriate and cost-effective management maintaining diversity and biomass of target forbs in mountain hay meadows? Flora 207: 303-309. http://dx.doi.org/10.1016/j.flora.2012.02.003

Valkó, O., Tóthmérész, B., Kelemen, A., Simon, E., Miglécz, T., Lukács, B., Török, P. 2014: Environmental factors driving vegetation and seed bank diversity in alkali grasslands. Agriculture, Ecosystems and Environment 182: 80-87. http://dx.doi.org/10.1016/j.agee.2013.06.012

Wanner, A., Suchrow, S., Kiehl, K., Meyer, W., Pohlmann, N., Stock, M., Jensen, K. 2014: Scale matters: Impact of management regime on plant species richness and vegetation type diversity in Wadden Sea salt marshes. Agriculture, Ecosystems and Environment182: 69-79. http://dx.doi.org/10.1016/j.agee.2013.08.014

Wilson, J.B., Peet, R.K., Dengler, J., Pärtel, M. 2012: Plant species richness: the world records. Journal of Vegetation Science 23: 796-802. http://dx.doi.org/10.1111/j.1654-1103.2012.01400.x

Zar, J. H. 1999: Biostatistical analysis. New Jersey, Upper Saddle River: Prentice & Hall.